Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
bioRxiv ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38405804

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) is partly initiated through the transdifferentiation of acinar cells to metaplastic ducts that act as precursors of neoplasia and cancer. Tuft cells are solitary chemosensory cells not found in the normal pancreas but arise in metaplasia and neoplasia, diminishing as neoplastic lesions progress to carcinoma. Metaplastic tuft cells (mTCs) function to suppress tumor progression through communication with the tumor microenvironment, but their fate during progression is unknown. To determine the fate of mTCs during PDA progression, we have created a lineage tracing model that uses a tamoxifen-inducible tuft-cell specific Pou2f3 CreERT/+ driver to induce transgene expression, including the lineage tracer tdTomato or the oncogene Myc. mTC lineage trace models of pancreatic neoplasia and carcinoma were used to follow mTC fate. We found that mTCs, in the carcinoma model, transdifferentiate into neural-like progenitor cells (NRPs), a cell type associated with poor survival in PDA patients. Using conditional knock-out and overexpression systems, we found that Myc activity in mTCs is necessary and sufficient to induce this Tuft-to-Neuroendocrine-Transition (TNT).

2.
Cell Mol Gastroenterol Hepatol ; 17(5): 737-743, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38316215

RESUMEN

Bearing a dismal 5-year survival rate, pancreatic ductal adenocarcinoma (PDAC) is a challenging disease that features a unique fibroinflammatory tumor microenvironment. As major components of the PDAC tumor microenvironment, cancer-associated fibroblasts are still poorly understood and their contribution to the several hallmarks of PDAC, such as resistance to therapies, immunosuppression, and high incidence of metastasis, is likely underestimated. There have been encouraging advances in the understanding of these fascinating cells, but many controversies remain, leaving the field still actively exploring the full scope of their contributions in PDAC progression. Here we pose several important considerations regarding PDAC cancer-associated fibroblast functions. We posit that transcriptomic analyses be interpreted with caution, when aiming to uncover the functional contributions of these cells. Moreover, we propose that normalizing these functions, rather than eliminating them, will provide the opportunity to enhance therapeutic response. Finally, we propose that cancer-associated fibroblasts should not be studied in isolation, but in conjunction with its extracellular matrix, because their respective functions are coordinated and concordant.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Fibroblastos Asociados al Cáncer/patología , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Células del Estroma , Perfilación de la Expresión Génica , Microambiente Tumoral
3.
bioRxiv ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38168289

RESUMEN

Cellular plasticity is a hallmark of pancreatic ductal adenocarcinoma (PDAC) starting from the conversion of normal cells into precancerous lesions to the progression of carcinoma subtypes associated with aggressiveness and therapeutic response. We discovered that normal acinar cell differentiation, maintained by the transcription factor Pdx1, suppresses a broad gastric cell identity that is maintained in metaplasia, neoplasia, and the classical subtype of PDAC in mouse and human. We have identified the receptor tyrosine kinase Ror2 as marker of a gastric metaplasia (SPEM)-like identity in the pancreas. Ablation of Ror2 in a mouse model of pancreatic tumorigenesis promoted a switch to a gastric pit cell identity that largely persisted through progression to the classical subtype of PDAC. In both human and mouse pancreatic cancer, ROR2 activity continued to antagonize the gastric pit cell identity, strongly promoting an epithelial to mesenchymal transition, conferring resistance to KRAS inhibition, and vulnerability to AKT inhibition.

4.
bioRxiv ; 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37986898

RESUMEN

Activating mutations in KRAS extensively reprogram cellular metabolism to support the continuous growth, proliferation, and survival of pancreatic tumors. Targeting these metabolic dependencies are promising approaches for the treatment of established tumors. However, metabolic reprogramming is required early during tumorigenesis to provide transformed cells selective advantage towards malignancy. Acinar cells can give rise to pancreatic tumors through acinar-to-ductal metaplasia (ADM). Dysregulation of pathways that maintain acinar homeostasis accelerate tumorigenesis. During ADM, acinar cells transdifferentiate to duct-like cells, a process driven by oncogenic KRAS. The metabolic reprogramming that is required for the transdifferentiation in ADM is unclear. We performed transcriptomic analysis on mouse acinar cells undergoing ADM and found metabolic programs are globally enhanced, consistent with the transition of a specialized cell to a less differentiated phenotype with proliferative potential. Indeed, we and others have demonstrated how inhibiting metabolic pathways necessary for ADM can prevent transdifferentiation and tumorigenesis. Here, we also find NRF2-target genes are differentially expressed during ADM. Among these, we focused on the increase in the gene coding for NADPH-producing enzyme, Glucose-6-phosphate dehydrogenase (G6PD). Using established mouse models of KrasG12D-driven pancreatic tumorigenesis and G6PD-deficiency, we find that mutant G6pd accelerates ADM and pancreatic intraepithelial neoplasia. Acceleration of cancer initiation with G6PD-deficiency is dependent on its NADPH-generating function in reactive oxygen species (ROS) management, as opposed to other outputs of the pentose phosphate pathway. Together, this work provides new insights into the function of metabolic pathways during early tumorigenesis.

5.
Cancer Lett ; 578: 216455, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37865160

RESUMEN

Ubiquitin-binding associated protein 2 (UBAP2) is reported to promote macropinocytosis and pancreatic adenocarcinoma (PDAC) growth, however, its role in normal pancreatic function remains unknown. We addressed this knowledge gap by generating UBAP2 knockout (U2KO) mice under a pancreas-specific Cre recombinase (Pdx1-Cre). Pancreatic architecture remained intact in U2KO animals, but they demonstrated slight glucose intolerance compared to controls. Upon cerulein challenge to induce pancreatitis, U2KO animals had reduced levels of several pancreatitis-relevant cytokines, amylase and lipase in the serum, reduced tissue damage, and lessened neutrophil infiltration into the pancreatic tissue. Mechanistically, cerulein-challenged U2KO animals revealed reduced NF-κB activation compared to controls. In vitro promoter binding studies confirmed the reduction of NF-κB binding to its target molecules supporting UBAP2 as a new regulator of inflammation in pancreatitis and may be exploited as a therapeutic target in future to inhibit pancreatitis.


Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Pancreatitis , Ratones , Animales , Ceruletida/efectos adversos , FN-kappa B/metabolismo , Adenocarcinoma/patología , Neoplasias Pancreáticas/inducido químicamente , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/prevención & control , Pancreatitis/inducido químicamente , Pancreatitis/genética , Pancreatitis/prevención & control , Páncreas/patología , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/metabolismo , Glucosa/metabolismo , Enfermedad Aguda
6.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36986488

RESUMEN

Cancer-associated fibroblasts (CAFs) execute diverse and complex functions in cancer progression. While reprogramming the crosstalk between CAFs and cancer epithelial cells is a promising avenue to evade the adverse effects of stromal depletion, drugs are limited by their suboptimal pharmacokinetics and off-target effects. Thus, there is a need to elucidate CAF-selective cell surface markers that can improve drug delivery and efficacy. Here, functional proteomic pulldown with mass spectrometry was used to identify taste receptor type 2 member 9 (TAS2R9) as a CAF target. TAS2R9 target characterization included binding assays, immunofluorescence, flow cytometry, and database mining. Liposomes conjugated to a TAS2R9-specific peptide were generated, characterized, and compared to naked liposomes in a murine pancreatic xenograft model. Proof-of-concept drug delivery experiments demonstrate that TAS2R9-targeted liposomes bind with high specificity to TAS2R9 recombinant protein and exhibit stromal colocalization in a pancreatic cancer xenograft model. Furthermore, the delivery of a CXCR2 inhibitor by TAS2R9-targeted liposomes significantly reduced cancer cell proliferation and constrained tumor growth through the inhibition of the CXCL-CXCR2 axis. Taken together, TAS2R9 is a novel cell-surface CAF-selective target that can be leveraged to facilitate small-molecule drug delivery to CAFs, paving the way for new stromal therapies.

7.
Cancer Lett ; 561: 216149, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36990268

RESUMEN

Invariant natural killer T (iNKT) cells are innate-like T cells that are abundant in liver sinusoids and play a critical role in tumor immunity. However, the role of iNKT cells in pancreatic cancer liver metastasis (PCLM) has not been fully explored. In this study, we employed a hemi-spleen pancreatic tumor cell injection mouse model of PCLM, a model that closely mimics clinical conditions in humans, to explore the role of iNKT cells in PCLM. Activation of iNKT cells with α-galactosylceramide (αGC) markedly increased immune cell infiltration and suppressed PCLM progression. Via single cell RNA sequencing (scRNA-seq) we profiled over 30,000 immune cells from normal liver and PCLM with or without αGC treatment and were able to characterize the global changes of the immune cells in the tumor microenvironment upon αGC treatment, identifying a total of 12 subpopulations. Upon treatment with αGC, scRNA-Seq and flow cytometry analyses revealed increased cytotoxic activity of iNKT/NK cells and skewing CD4 T cells towards a cytotoxic Th1 profile and CD8 T cells towards a cytotoxic profile, characterized by higher proliferation and reduced exhaustion marker PD1 expression. Moreover, αGC treatment excluded tumor associated macrophages. Lastly, imaging mass cytometry analysis uncovered the reduced epithelial to mesenchymal transition related markers and increased active CD4 and CD8 T cells in PCLM with αGC treatment. Overall, our findings uncover the protective function of activated iNKT cells in pancreatic cancer liver metastasis through increased NK and T cell immunity and decreased tumor associated macrophages.


Asunto(s)
Neoplasias Hepáticas , Células T Asesinas Naturales , Neoplasias Pancreáticas , Animales , Ratones , Humanos , Transición Epitelial-Mesenquimal , Análisis de Expresión Génica de una Sola Célula , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Citometría de Imagen , Activación de Linfocitos , Microambiente Tumoral
8.
Elife ; 122023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36727849

RESUMEN

An extensive fibroinflammatory stroma rich in macrophages is a hallmark of pancreatic cancer. In this disease, it is well appreciated that macrophages are immunosuppressive and contribute to the poor response to immunotherapy; however, the mechanisms of immune suppression are complex and not fully understood. Immunosuppressive macrophages are classically defined by the expression of the enzyme Arginase 1 (ARG1), which we demonstrated is potently expressed in pancreatic tumor-associated macrophages from both human patients and mouse models. While routinely used as a polarization marker, ARG1 also catabolizes arginine, an amino acid required for T cell activation and proliferation. To investigate this metabolic function, we used a genetic and a pharmacologic approach to target Arg1 in pancreatic cancer. Genetic inactivation of Arg1 in macrophages, using a dual recombinase genetically engineered mouse model of pancreatic cancer, delayed formation of invasive disease, while increasing CD8+ T cell infiltration. Additionally, Arg1 deletion induced compensatory mechanisms, including Arg1 overexpression in epithelial cells, namely Tuft cells, and Arg2 overexpression in a subset of macrophages. To overcome these compensatory mechanisms, we used a pharmacological approach to inhibit arginase. Treatment of established tumors with the arginase inhibitor CB-1158 exhibited further increased CD8+ T cell infiltration, beyond that seen with the macrophage-specific knockout, and sensitized the tumors to anti-PD1 immune checkpoint blockade. Our data demonstrate that Arg1 drives immune suppression in pancreatic cancer by depleting arginine and inhibiting T cell activation.


Asunto(s)
Arginasa , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Arginasa/genética , Arginasa/metabolismo , Arginina/metabolismo , Linfocitos T CD8-positivos , Macrófagos , Neoplasias Pancreáticas/patología
9.
Nat Cancer ; 3(11): 1386-1403, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36411320

RESUMEN

The pancreatic tumor microenvironment drives deregulated nutrient availability. Accordingly, pancreatic cancer cells require metabolic adaptations to survive and proliferate. Pancreatic cancer subtypes have been characterized by transcriptional and functional differences, with subtypes reported to exist within the same tumor. However, it remains unclear if this diversity extends to metabolic programming. Here, using metabolomic profiling and functional interrogation of metabolic dependencies, we identify two distinct metabolic subclasses among neoplastic populations within individual human and mouse tumors. Furthermore, these populations are poised for metabolic cross-talk, and in examining this, we find an unexpected role for asparagine supporting proliferation during limited respiration. Constitutive GCN2 activation permits ATF4 signaling in one subtype, driving excess asparagine production. Asparagine release provides resistance during impaired respiration, enabling symbiosis. Functionally, availability of exogenous asparagine during limited respiration indirectly supports maintenance of aspartate pools, a rate-limiting biosynthetic precursor. Conversely, depletion of extracellular asparagine with PEG-asparaginase sensitizes tumors to mitochondrial targeting with phenformin.


Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Animales , Ratones , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Asparagina/metabolismo , Adenocarcinoma/tratamiento farmacológico , Simbiosis , Microambiente Tumoral , Neoplasias Pancreáticas
10.
Cancers (Basel) ; 14(19)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36230597

RESUMEN

Antiestrogen therapy (AET) is an alternative to cytotoxic chemotherapy for recurrent ovarian cancer, yet the often short duration of response suggests mechanisms of resistance. We previously demonstrated that tumor microenvironment interleukin-6/leukemia inhibitory factor (IL6/LIF) cytokines induce tumor cell JAK-STAT signaling to promote cancer growth. Crosstalk between estrogen signaling and cytokine signaling has been reported. Therefore, we sought to characterize the impact of IL6/LIF signaling on estrogen signaling in epithelial ovarian cancer and investigate the efficacy of combination therapy. We first assessed patient tumors for cytokine expression and compared it with response to AET to determine clinical relevance. In vitro, we determined the effect of IL6/LIF on estrogen receptor expression and signaling. Cell viability assays were used to determine the efficacy and potential synergy of cytokine blockade and AET. We then extended studies to animal models, incorporating patient-derived stromal cells. Our results demonstrated shorter progression-free interval on AET in patients with stromal IL6/LIF expression. In vitro, IL6/LIF increased tumor cell estrogen receptor expression and signaling, and combination cytokine blockade and AET resulted in synergistic inhibition of tumor cell growth. The anticancer effect was verified in a mouse model. In conclusion, due to crosstalk between IL6/LIF cytokine signaling and estrogen signaling, dual blockade is a potential new treatment approach for ovarian cancer.

11.
Oncogenesis ; 11(1): 56, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109493

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is characterized by an extensive fibroinflammatory stroma and often experiences conditions of insufficient oxygen availability or hypoxia. Cancer-associated fibroblasts (CAF) are a predominant and heterogeneous population of stromal cells within the pancreatic tumor microenvironment. Here, we uncover a previously unrecognized role for hypoxia in driving an inflammatory phenotype in PDAC CAFs. We identify hypoxia as a strong inducer of tumor IL1ɑ expression, which is required for inflammatory CAF (iCAF) formation. Notably, iCAFs preferentially reside in hypoxic regions of PDAC. Our data implicate hypoxia as a critical regulator of CAF heterogeneity in PDAC.

12.
Am J Respir Cell Mol Biol ; 67(6): 641-653, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36036796

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a poorly understood, progressive lethal lung disease with no known cure. In addition to alveolar epithelial cell (AEC) injury and excessive deposition of extracellular matrix proteins, chronic inflammation is a hallmark of IPF. Literature suggests that the persistent inflammation seen in IPF primarily consists of monocytes and macrophages. Recent work demonstrates that monocyte-derived alveolar macrophages (moAMs) drive lung fibrosis, but further characterization of critical moAM cell attributes is necessary. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is an important epidermal growth factor receptor ligand that has essential roles in angiogenesis, wound healing, keratinocyte migration, and epithelial-mesenchymal transition. Our past work has shown HB-EGF is a primary marker of profibrotic M2 macrophages, and this study seeks to characterize myeloid-derived HB-EGF and its primary mechanism of action in bleomycin-induced lung fibrosis using Hbegff/f;Lyz2Cre+ mice. Here, we show that patients with IPF and mice with pulmonary fibrosis have increased expression of HB-EGF and that lung macrophages and transitional AECs of mice with pulmonary fibrosis and humans all express HB-EGF. We also show that Hbegff/f;Lyz2Cre+ mice are protected from bleomycin-induced fibrosis and that this protection is likely multifactorial, caused by decreased CCL2-dependent monocyte migration, decreased fibroblast migration, and decreased contribution of HB-EGF from AEC sources when HB-EGF is removed under the Lyz2Cre promoter.


Asunto(s)
Fibrosis Pulmonar Idiopática , Humanos , Ratones , Animales , Factor de Crecimiento Similar a EGF de Unión a Heparina/metabolismo , Factor de Crecimiento Similar a EGF de Unión a Heparina/farmacología , Bleomicina , Heparina , Inflamación , Factor de Crecimiento Epidérmico/farmacología
13.
PLoS Genet ; 18(7): e1010315, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35867772

RESUMEN

Proper Hedgehog (HH) signaling is essential for embryonic development, while aberrant HH signaling drives pediatric and adult cancers. HH signaling is frequently dysregulated in pancreatic cancer, yet its role remains controversial, with both tumor-promoting and tumor-restraining functions reported. Notably, the GLI family of HH transcription factors (GLI1, GLI2, GLI3), remain largely unexplored in pancreatic cancer. We therefore investigated the individual and combined contributions of GLI1-3 to pancreatic cancer progression. At pre-cancerous stages, fibroblast-specific Gli2/Gli3 deletion decreases immunosuppressive macrophage infiltration and promotes T cell infiltration. Strikingly, combined loss of Gli1/Gli2/Gli3 promotes macrophage infiltration, indicating that subtle changes in Gli expression differentially regulate immune infiltration. In invasive tumors, Gli2/Gli3 KO fibroblasts exclude immunosuppressive myeloid cells and suppress tumor growth by recruiting natural killer cells. Finally, we demonstrate that fibroblasts directly regulate macrophage and T cell migration through the expression of Gli-dependent cytokines. Thus, the coordinated activity of GLI1-3 directs the fibroinflammatory response throughout pancreatic cancer progression.


Asunto(s)
Proteínas Hedgehog , Neoplasias Pancreáticas , Adulto , Niño , Femenino , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neoplasias Pancreáticas/genética , Embarazo , Proteína con Dedos de Zinc GLI1/genética , Proteína Gli2 con Dedos de Zinc/genética , Proteína Gli3 con Dedos de Zinc/genética
14.
Elife ; 112022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35815941

RESUMEN

Mitochondrial glutamate-oxaloacetate transaminase 2 (GOT2) is part of the malate-aspartate shuttle, a mechanism by which cells transfer reducing equivalents from the cytosol to the mitochondria. GOT2 is a key component of mutant KRAS (KRAS*)-mediated rewiring of glutamine metabolism in pancreatic ductal adenocarcinoma (PDA). Here, we demonstrate that the loss of GOT2 disturbs redox homeostasis and halts proliferation of PDA cells in vitro. GOT2 knockdown (KD) in PDA cell lines in vitro induced NADH accumulation, decreased Asp and α-ketoglutarate (αKG) production, stalled glycolysis, disrupted the TCA cycle, and impaired proliferation. Oxidizing NADH through chemical or genetic means resolved the redox imbalance induced by GOT2 KD, permitting sustained proliferation. Despite a strong in vitro inhibitory phenotype, loss of GOT2 had no effect on tumor growth in xenograft PDA or autochthonous mouse models. We show that cancer-associated fibroblasts (CAFs), a major component of the pancreatic tumor microenvironment (TME), release the redox active metabolite pyruvate, and culturing GOT2 KD cells in CAF conditioned media (CM) rescued proliferation in vitro. Furthermore, blocking pyruvate import or pyruvate-to-lactate reduction prevented rescue of GOT2 KD in vitro by exogenous pyruvate or CAF CM. However, these interventions failed to sensitize xenografts to GOT2 KD in vivo, demonstrating the remarkable plasticity and differential metabolism deployed by PDA cells in vitro and in vivo. This emphasizes how the environmental context of distinct pre-clinical models impacts both cell-intrinsic metabolic rewiring and metabolic crosstalk with the TME.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Aspartato Aminotransferasa Mitocondrial/genética , Aspartato Aminotransferasa Mitocondrial/metabolismo , Carcinoma Ductal Pancreático/patología , Proteínas de Unión a Ácidos Grasos , Humanos , Ratones , NAD/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Ácido Pirúvico/metabolismo , Microambiente Tumoral , Neoplasias Pancreáticas
15.
Cell Mol Gastroenterol Hepatol ; 13(6): 1673-1699, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35245687

RESUMEN

BACKGROUND & AIMS: Oncogenic Kirsten Rat Sarcoma virus (KRAS) is the hallmark mutation of human pancreatic cancer and a driver of tumorigenesis in genetically engineered mouse models of the disease. Although the tumor cell-intrinsic effects of oncogenic Kras expression have been widely studied, its role in regulating the extensive pancreatic tumor microenvironment is less understood. METHODS: Using a genetically engineered mouse model of inducible and reversible oncogenic Kras expression and a combination of approaches that include mass cytometry and single-cell RNA sequencing we studied the effect of oncogenic KRAS in the tumor microenvironment. RESULTS: We have discovered that non-cell autonomous (ie, extrinsic) oncogenic KRAS signaling reprograms pancreatic fibroblasts, activating an inflammatory gene expression program. As a result, fibroblasts become a hub of extracellular signaling, and the main source of cytokines mediating the polarization of protumorigenic macrophages while also preventing tissue repair. CONCLUSIONS: Our study provides fundamental knowledge on the mechanisms underlying the formation of the fibroinflammatory stroma in pancreatic cancer and highlights stromal pathways with the potential to be exploited therapeutically.


Asunto(s)
Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas p21(ras) , Animales , Fibroblastos/metabolismo , Virus del Sarcoma Murino de Kirsten/metabolismo , Ratones , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Microambiente Tumoral , Neoplasias Pancreáticas
16.
Cancers (Basel) ; 14(3)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35159064

RESUMEN

Protein kinase C iota (PKCι) functions as a bonafide human oncogene in lung and ovarian cancer and is required for KrasG12D-mediated lung cancer initiation and progression. PKCι expression is required for pancreatic cancer cell growth and maintenance of the transformed phenotype; however, nothing is known about the role of PKCι in pancreas development or pancreatic tumorigenesis. In this study, we investigated the effect of pancreas-specific ablation of PKCι expression on pancreatic cellular homeostasis, susceptibility to pancreatitis, and KrasG12D-mediated pancreatic cancer development. Knockout of pancreatic Prkci significantly increased pancreatic immune cell infiltration, acinar cell DNA damage, and apoptosis, but reduced sensitivity to caerulein-induced pancreatitis. Prkci-ablated pancreatic acinar cells exhibited P62 aggregation and a loss of autophagic vesicles. Loss of pancreatic Prkci promoted KrasG12D-mediated pancreatic intraepithelial neoplasia formation but blocked progression to adenocarcinoma, consistent with disruption of autophagy. Our results reveal a novel promotive role for PKCι in pancreatic epithelial cell autophagy and pancreatic cancer progression.

17.
Nat Commun ; 13(1): 156, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013174

RESUMEN

Immune evasion is indispensable for cancer initiation and progression, although its underlying mechanisms in pancreatic ductal adenocarcinoma (PDAC) are not fully known. Here, we characterize the function of tumor-derived PGRN in promoting immune evasion in primary PDAC. Tumor- but not macrophage-derived PGRN is associated with poor overall survival in PDAC. Multiplex immunohistochemistry shows low MHC class I (MHCI) expression and lack of CD8+ T cell infiltration in PGRN-high tumors. Inhibition of PGRN abrogates autophagy-dependent MHCI degradation and restores MHCI expression on PDAC cells. Antibody-based blockade of PGRN in a PDAC mouse model remarkably decelerates tumor initiation and progression. Notably, tumors expressing LCMV-gp33 as a model antigen are sensitized to gp33-TCR transgenic T cell-mediated cytotoxicity upon PGRN blockade. Overall, our study shows a crucial function of tumor-derived PGRN in regulating immunogenicity of primary PDAC.


Asunto(s)
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Antígenos de Histocompatibilidad Clase I/genética , Neoplasias Pancreáticas/genética , Progranulinas/genética , Escape del Tumor/genética , Adenocarcinoma/inmunología , Adenocarcinoma/mortalidad , Adenocarcinoma/terapia , Animales , Anticuerpos Neutralizantes/farmacología , Antígenos Virales/genética , Antígenos Virales/inmunología , Autofagia/efectos de los fármacos , Autofagia/genética , Autofagia/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/terapia , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Estudios de Cohortes , Citotoxicidad Inmunológica , Expresión Génica , Glicoproteínas/genética , Glicoproteínas/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Virus de la Coriomeningitis Linfocítica/genética , Virus de la Coriomeningitis Linfocítica/inmunología , Ratones , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/terapia , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/inmunología , Progranulinas/antagonistas & inhibidores , Progranulinas/inmunología , Proteolisis , Análisis de Supervivencia , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Proteínas Virales/genética , Proteínas Virales/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Cell Mol Gastroenterol Hepatol ; 13(2): 643-667, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34583087

RESUMEN

BACKGROUND & AIMS: Inactivating mutations of KDM6A, a histone demethylase, were frequently found in pancreatic ductal adenocarcinoma (PDAC). We investigated the role of KDM6A (lysine demethylase 6A) in PDAC development. METHODS: We performed a pancreatic tissue microarray analysis of KDM6A protein levels. We used human PDAC cell lines for KDM6A knockout and knockdown experiments. We performed bromouridine sequencing analysis to elucidate the effects of KDM6A loss on global transcription. We performed studies with Ptf1aCre; LSL-KrasG12D; Trp53R172H/+; Kdm6afl/fl or fl/Y, Ptf1aCre; Kdm6afl/fl or fl/Y, and orthotopic xenograft mice to investigate the impacts of Kdm6a deficiency on pancreatic tumorigenesis and pancreatitis. RESULTS: Loss of KDM6A was associated with metastasis in PDAC patients. Bromouridine sequencing analysis showed up-regulation of the epithelial-mesenchymal transition pathway in PDAC cells deficient in KDM6A. Loss of KDM6A promoted mesenchymal morphology, migration, and invasion in PDAC cells in vitro. Mechanistically, activin A and subsequent p38 activation likely mediated the role of KDM6A loss. Inhibiting either activin A or p38 reversed the effect. Pancreas-specific Kdm6a-knockout mice pancreata showed accelerated PDAC progression, developed a more aggressive undifferentiated type of PDAC, and increased metastases in the background of Kras and p53 mutations. Kdm6a-deficient pancreata in a pancreatitis model had a delayed recovery with increased PDAC precursor lesions compared with wild-type pancreata. CONCLUSIONS: Loss of KDM6A accelerates PDAC progression and metastasis, most likely by a noncanonical p38-dependent activin A pathway. KDM6A also promotes pancreatic tissue recovery from pancreatitis. Activin A might be used as a therapeutic target for KDM6A-deficient PDACs.


Asunto(s)
Plasticidad de la Célula , Neoplasias Pancreáticas , Activinas/metabolismo , Animales , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Humanos , Ratones , Páncreas/patología , Neoplasias Pancreáticas/patología
19.
Genes Dev ; 35(19-20): 1325-1326, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34599002

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers. Virtually all PDAC harbors an oncogenic mutation in the KRAS gene, making it the prime target for therapy. Most previous attempts to inhibit KRAS directly have been disappointing, but recent success in targeting some KRAS mutants presages a new era in PDAC therapy. Models of PDAC have predicted that identifying KRAS inhibitor resistance mechanisms will be critical. In this issue of Genes & Development, Hou and colleagues (pp. 1327-1332) identify one such mechanism in which the deubiquitinase USP21 up-regulates the nutrient-scavenging process of macropinocytosis, rescuing PDAC cells from Kras extinction.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular/genética , Humanos , Mutación , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Ubiquitina Tiolesterasa/genética
20.
Sci Rep ; 11(1): 17220, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34446743

RESUMEN

Primary cilia protrude from the apical surface of many cell types and act as a sensory organelle that regulates diverse biological processes ranging from chemo- and mechanosensation to signaling. Ciliary dysfunction is associated with a wide array of genetic disorders, known as ciliopathies. Polycystic lesions are commonly found in the kidney, liver, and pancreas of ciliopathy patients and mouse models. However, the pathogenesis of the pancreatic phenotype remains poorly understood. Chibby1 (Cby1), a small conserved coiled-coil protein, localizes to the ciliary base and plays a crucial role in ciliogenesis. Here, we report that Cby1-knockout (KO) mice develop severe exocrine pancreatic atrophy with dilated ducts during early postnatal development. A significant reduction in the number and length of cilia was observed in Cby1-KO pancreta. In the adult Cby1-KO pancreas, inflammatory cell infiltration and fibrosis were noticeable. Intriguingly, Cby1-KO acinar cells showed an accumulation of zymogen granules (ZGs) with altered polarity. Moreover, isolated acini from Cby1-KO pancreas exhibited defective ZG secretion in vitro. Collectively, our results suggest that, upon loss of Cby1, concomitant with ciliary defects, acinar cells accumulate ZGs due to defective exocytosis, leading to cell death and progressive exocrine pancreatic degeneration after birth.


Asunto(s)
Proteínas Portadoras/genética , Cilios/metabolismo , Páncreas Exocrino/metabolismo , Páncreas/metabolismo , Pancreatitis/genética , Células Acinares/metabolismo , Animales , Atrofia , Proteínas Portadoras/metabolismo , Ciliopatías/genética , Ciliopatías/metabolismo , Exocitosis/genética , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Páncreas/patología , Páncreas/ultraestructura , Páncreas Exocrino/patología , Pancreatitis/metabolismo , Vesículas Secretoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA